text.editor-buffer User’s Manual

Robert Strandh
Jan Moringen

This manual is for text.editor-buffer version 0.2.0.
Copyright (©) 2015 — 2022 Robert Strandh
Copyright (©) 2023 — 2025 Jan Moringen

Table of Contents

1 Introduction............................, 1
2 External Protocols............................... 4
2.1 Packages and Use Recommendation............................. 4
2.2 Thread Safety ... 4
2.3 ConditionsSvuttttt e 4
2.4 Protocol Classes.ttt 6
2.5 Location Comparison Protocol.................................. 7
2.6 Item Container Protocol................. 8
2.7 Line Number Protocol......... i, 9
2.8 Buffer Link Protocol i 10
2.9 Cursor Protocol.o 10
2.10 Line Protocol 16
2.11 Buffer Protocol...........co i 18
2.12 Update Protocol ... 19
2.13 Convenience Functions ..., 21
3 Implementation Protocols 23
3.1 Location Comparison Implementation Protocol 24
3.2 Item Container Implementation Protocol 24
3.3 Line Link Implementation Protocol.......................... ... 25
3.4 Buffer Link Implementation Protocol 25
3.5 Cursor Implementation Protocol............. 25
3.6 Line Implementation Protocol 29
3.7 Dock Protocol...........c e 31
3.8 Buffer Implementation Protocol 32
3.9 Update Implementation protocol............., 33
4 Implementations................................ 34
4.1 Simple Implementation........... .o 34
4.2 Standard Implementation...............c.oviiiiiiiiieiiin . 34
Concept Index, 36

Function and Macro and Variable and Type
Indexo 37

Changelog 39

1 Introduction

text.editor-buffer is a library for representing the buffer of a text editor. As such, it defines
a set of Common Lisp Object System protocols for client code to interact with the buffer
contents in various ways, and it supplies different implementations of those protocols for
different purposes.

The buffer protocols have been chosen so that they can fit a variety of editors. As a
consequence, they are not particularly Emacs-centric. For example, in Emacs, a newline
character is just another character, so that moving past it using the forward-char command
changes the line in which point is located, and using the delete-char command when point
is to the left of a newline character joins the line to the next one.

In contrast, the buffer protocols documented here are line oriented and there is no newline
character; only a sequence of lines. At some level, it is of course desirable to have Emacs-
compatible commands, but these commands are written separately, using this buffer proto-
col to accomplish the effects. For example, the Emacs-compatible forward-item command
(which this library does not provide; see https://github.com/scymtym/text.editing for
a possible implementation) checks whether it is at the end of a line, and if so, detaches
the cursor from that line and attaches it to the next one. Similarly, the Emacs compat-
ible delete-item command calls text.editor-buffer: join-line in the buffer protocol
to obtain the desired effect when it is at the end of a line.

Figure 1.1 gives a simplified overview of the architecture text.editor-buffer in terms of
the most important concepts and their composition. For a more complete picture, see
Implementation Protocols. As mentioned above, a buffer consists of a sequence of lines
which in turn consist of a sequence of items (not necessarily characters). In addition to
containing items, lines can have zero, one or multiple cursors associated with them. Each
cursor has an index which references a spot between two items of the associated line or the
spot before the first item or the spot after the last item.

https://github.com/scymtym/text.editing

Chapter 1: Introduction 2

Buffer

current-time

Line O

e | (2|

Line 1

nd (] [

Line 2

] [9

Figure 1.1: An example of important text.editor-buffer concepts and their composition for
a single buffer.

By writing the editor commands in two levels like this, we hope it will be easier to use the
buffer protocols to write emulators for other editors, such as VIM.
The buffer participates in two different buffer protocols:

1. The edit protocol, used by client editing and cursor-motion operations.

2. The update protocol, used by redisplay operations to determine what items are con-
tained in the buffer.

The operations in the edit protocol were designed to be fast (typically around 10 pus) so
that it is practical to use these operations in a loop, say to insert or delete a region, or to
accomplish several operations inside a keyboard macro. The exceptions are the operations
text.editor-buffer:split and text.editor-buffer: join that take time proportional
to the number of items in the second line.!

The operations in the update protocol were designed to be called at the frequency of the
event loop of an application, typically once for each character typed, but also when a window
is resized or scrolled (in which case, these operations are very fast since no modifications to
the buffer have occurred).

The buffer edit protocols expose two levels of abstraction to client code:

1. The buffer level represents the sequence of lines independently of how the individual
lines are represented.

2. The line level represents individual lines.

As mentioned above, the buffer protocols do not pretend to manage any equivalence between
line breaks and some sequence of characters. It is up to client code to model such an equiva-

L We may improve on this performance in the future.

Chapter 1: Introduction 3

lence if desired. As a consequence, the buffer protocols do not allow for a cursor at the begin-
ning of a line to move backward or a cursor at the end of a line to move forward. An attempt
at doing so will result in an error being signaled. If client code wants to impose a model
where the line break corresponds to (say) the newline character, then it must explicitly
detach and reattach the cursor to a different line in these cases. It can manage that in two
different ways: either by explicitly testing for text.editor-buffer:beginning-of-line-p
or text.editor-buffer:end-of-line-p before calling the equivalent buffer function, or
by handling the error that results from the attempt.

The buffer also does not interpret the meaning of any of items contained in it. For instance,
whether an item is to be considered part of a word or not, is not decided at the buffer level,
but at the level of the syntax. As a consequence, the buffer protocol does not offer any
functions that require such interpretation, such as forward-word, end-of-paragraph, etc.

2 External Protocols

2.1 Packages and Use Recommendation

All symbols that are relevant to external protocols are in the package named
text.editor-buffer. We recommend against client code using this package in the sense
of the :use option to cl:defpackage (https://novaspec.org/cl/f_defpackage) or in
the sense of calling cl:use-package (https://novaspec.org/cl/f_use-package). The
reason for this recommendation is that we can not guarantee that future additions to this
library will not define external symbols that conflict with symbols in the common-lisp
package or symbols used by the client for other purposes.

Instead, we recommend that client code use explicit package prefixes, possibly in combina-
tion with package-local nicknames. In addition to avoiding future conflicts, this practice
will make the origin of the respective symbol obvious from the source code.

2.2 Thread Safety

Operations in text.editor-buffer are not safe to perform concurrently when the operations
either directly involve a common object or the involved objects are (directly or indirectly)
attached to a common object. An example of the latter case would be concurrent operations
on two distinct cursors that are attached to lines which in turn are attached to the same
buffer (See Figure 1.1 for the concepts and their relations). Put differently, concurrent
operations are safe on distinct detached objects or objects with disjoint attachment relations.
In particular note that even if the two cursors in the example are attached to different lines,
concurrent operations on the cursors are still unsafe if the lines are ultimately attached to
the same buffer.

2.3 Conditions

text.editor-buffer defines a number of conditions that are signaled when text.editor-buffer
is unable to fulfill the contract stipulated by the protocol function being used.

editor-buffer-error I[text.editor-butfer] [Class]
This condition type is the base of all error conditions signaled by text.editor-buffer.
Client code that wishes to handle all error conditions signaled by text.editor-buffer
may use this condition in its condition handlers.

The following conditions are signaled when an operation on one or more cursors cannot
be performed because the supplied cursors are not in the correct state in some way such
as not being attached to a suitable line or (indirectly) a suitable buffer. When any of
these conditions is signaled, the cause is a program error in text.editor-buffer or the client
program (as opposed to something the end user did).

cursors—-not-comparable-error [text.editor-buffer] [Class]
This condition is signaled when an attempt is made to compare two cursors which are
each attached to a line but the lines do not belong to the same buffer. The readers
cursorl and cursor2 can be used to obtain the offending cursor objects.

https://novaspec.org/cl/f_defpackage
https://novaspec.org/cl/f_use-package

Chapter 2: External Protocols 5

cursor—-attached-error [text.editor-buffer] [Class]
This condition is signaled when an attempt is made to use a cursor in an operation
that requires that cursor to be detached, but the cursor used in the operation is
attached to a line.

cursor-detached-error ([text.editor-butfer] [Class]
This condition is signaled when an attempt is made to use a cursor in an operation
that requires that cursor to be attached, but the cursor used in the operation is not
attached to any line.

line-detached-error [text.editor-buffer] [Class]
This condition is signaled when an attempt is made to use a line in an operation that
requires the line to be attached to a buffer, but the line used in the operation is not
attached to a buffer. An example of such an operation would be to attempt to get
the line number of the line, given that the line number of a line is determined by the
buffer to which the line is attached.

The following conditions are signaled when an operation cannot be performed for the spec-
ified location within a line or buffer. The cause for signaling one of these conditions can
be either a program error (in text.editor-buffer or the client program) or an operation re-
quested by the end user. Clients can therefore allow end users to request operations on
invalid locations and handle the resulting conditions by displaying the condition report to
the end user.

beginning-of-line-error [text.editor-buffer] [Class]
This condition is signaled when an attempt is made to use an index that is negative,
either by moving a cursor there, or by attempting to access an item at such an index.

end-of-line-error I[text.editor-buffer] [Class]
This condition is signaled when an attempt is made to use an index that is too large,
either by moving a cursor there, or by attempting to access an item at such an index.
Notice that in some cases, “too large” means “strictly greater than the number of
items in a line”, and sometimes it means “greater than or equal to the number of
items in a line”. For example, it is perfectly acceptable to move a cursor to an index
that is equal to the number of items in a line, but it is not acceptable to attempt to
access an item in a line at that index.

beginning-of-buffer-error I[text.editor-butfer] [Class]
This condition is signaled when an attempt is made to use a line number
that is negative, for example by issuing a “previous line” or “goto line” cursor
movement command for which the target line number that gets passed to
text.editor-buffer:find-line is negative.

end-of-buffer-error I[text.editor-butfer] [Class]
This condition is signaled when an attempt is made to use a line number that is too
large, for example by issuing a “next line” or “goto line” cursor movement command
for which the target line number that gets passed to text.editor-buffer:find-line
is larger than the number of lines in the buffer.

Chapter 2: External Protocols 6

invalid-item-index-error [text.editor-buffer] [Class]
This condition is signaled when an attempt is made to access an item within a line at
an index that is not valid for that line. An invalid index is either negative or too large
given the item count of the line. Notice that in some cases, “too large” means “strictly
greater than the number of items in the line”, and sometimes it means “greater than
or equal to the number of items in the line”. For example, it is perfectly acceptable
to split a line at an index that is equal to the number of items in the line, but it is
not acceptable to attempt to access an item at that index.

join-last-line-error I[text.editor-butfer] [Class]
This condition is signaled when an attempt is made to join the last line of a buffer
with its (non-existent) successor line.

invalid-line-index—-error [text.editor-buffer] [Class]
This condition is signaled when an attempt is made to access a line within a buffer
at a line number that is not valid for that buffer. An invalid index is either negative
or too large given the line count of the buffer.

bounding-indices-error [text.editor-buffer] [Class]
This condition is signaled when invalid bounding index designators are supplied.

Bounding index designators are accepted as optional arguments by the generic func-
tion text.editor-buffer:items.

2.4 Protocol Classes

The protocol classes described in this section serve as universal superclasses for the classes
of certain text.editor-buffer objects. The purpose of protocol classes is mainly to allow
specializing methods on protocol functions such that the methods are applicable to all
objects that play a certain role in the respective protocol, regardless of the classes of those
objects.

CUrsOTY [text.editor-buffer] [Class]
This is the superclass for all cursors. It should not itself be instantiated. Instead,
text.editor-buffer contains two different modules each supplying two different subclass
that can be instantiated. See Implementations.

By default, it is recommended that client code instantiate the class
text.editor-buffer.standard-line:right-sticky-cursor. This is also what
text.editor-buffer:make-buffer does by default.

line [text.editor-buffer] [Class]
This class is the superclass for all lines. It should not itself be instantiated. Instead,
text.editor-buffer contains two different modules each supplying a different subclass
that can be instantiated. See Implementations.

buffer [text.editor-buffer] [Class]
This is the superclass for all buffers. It should not itself be instantiated. Instead,
text.editor-buffer contains different modules, each providing a different subclass that
can be instantiated. See Implementations.

Chapter 2: External Protocols 7

By default, it is recommended that client code instantiate the class
text.editor-buffer.standard-buffer:buffer. This is also what
text.editor-buffer:make-buffer does by default.

2.5 Location Comparison Protocol

Cursors which are attached to lines which belong to the same buffer can be lexicographically
ordered based on their line numbers and within-line indices. The functions in this protocol
allow comparing cursor objects according to this order.

This functions in this protocol perform checks for invalid arguments, group their arguments
into one or more binary operator applications, flip the comparison direction where necessary
and then call functions in the Section 3.1 [Location Comparison Implementation Protocol],
page 24, which implement the core behavior based on the classes of the supplied cursors.

location< [text.editor-buffer] [Function]
Cursor &rest more-cursors

Return true if for each adjacent pair of cursors (c,¢;) in the sequence
of cursors consisting of cursor followed by more-cursors, c¢; is posi-
tioned before ¢, in the buffer. This function calls the generic function
text.editor-buffer.implementation:location< for each such pair to check
whether the property holds. As a consequence, return true if only cursor is supplied.

If any of the cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. Unless all cursor
are attached to lines which belong to the same buffer, a condition of type
text.editor-buffer:cursors-not-comparable-error is signaled.

location<= [text.editor-buffer] [Function]
cursor &rest more-cursors

Return true if for each adjacent pair of cursors (c;,cy) in the sequence of cursors
consisting of cursor followed by more-cursors, c¢; is positioned before c, or at
the same location as c; in the buffer. This function calls the generic function
text.editor-buffer.implementation:location<= for each such pair to check
whether the property holds. As a consequence, return true if only cursor is supplied.

If any of the cursors is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. @ Unless all cursors
are attached to lines which belong to the same buffer, a condition of type
text.editor-buffer:cursors-not-comparable-error is signaled.

location= [text.editor-buffer] [Function]
cursor &rest more-cursors

Return true if all cursors in the sequence of cursors consisting of cursor followed by
more-cursors are positioned at the same location in the buffer. This function calls
the generic function text.editor-buffer.implementation:location= for pairs of
cursors to check whether the property holds. As a consequence, return true if only
cursor is supplied.

If any of the cursors is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. Unless all cursors

Chapter 2: External Protocols 8

are attached to lines which belong to the same buffer, a condition of type
text.editor-buffer:cursors-not-comparable-error is signaled.

location/= [text.editor-buffer] [Function]
cursor &rest more-cursors

Return true if no two cursors in the sequence of cursors consisting of cursor followed
by more-cursors are positioned at the same location in the buffer. This function calls
the generic function text.editor-buffer.implementation:location= for all pairs
of cursors to check whether the property is violated. As a consequence, return true if
only cursor is supplied.

If any of the cursors is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. = Unless all cursors
are attached to lines which belong to the same buffer, a condition of type
text.editor-buffer:cursors-not-comparable-error is signaled.

location>= [text.editor-buffer] [Function]
Cursor &rest more-cursors

Return true if for each adjacent pair of cursors (c;,cy) in the sequence of cursors
consisting of cursor followed by more-cursors, c¢; is positioned after or at the
same location as ¢y in the buffer. This function calls the generic function
text.editor-buffer.implementation:location< for each such pair to check
whether the property is violated. As a consequence, return true if only cursor is
supplied.

If any of the cursors is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. Unless all cursors
are attached to lines which belong to the same buffer, a condition of type
text.editor-buffer:cursors-not-comparable-error is signaled.

location> [text.editor-buffer] [Function]
CUrsor &rest more-cursors

Return true if for each adjacent pair of cursors (c¢;,c) in the sequence
of cursors consisting of cursor followed by more-cursors, c¢; is positioned
strictly after wvar, in the buffer. This function calls the generic function
text.editor-buffer.implementation:location<= for each such pair to check
whether the property is violated. As a consequence, return true if only cursor is
supplied.

If any of the cursors is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. = Unless all cursors
are attached to lines which belong to the same buffer, a condition of type
text.editor-buffer:cursors-not-comparable-error is signaled.

2.6 Item Container Protocol

The generic functions in this protocol can be applied to text.editor-buffer:cursor in-
stances and text.editor-buffer:line instances and text.editor-buffer:buffer in-
stances.

Chapter 2: External Protocols 9

The functions in this protocol perform checks for invalid arguments and invalid state then
call the generic functions of the Section 3.2 [Item Container Implementation Protocol],
page 24, to perform the core behavior based on the class of the supplied container.

item-count [text.editor-buffer] [Generic Function]
container

If container is an attached cursor, return the number of items in the line to which
container is attached. If container is not currently attached to a line, a condition of
type text.editor-buffer:cursor-detached-error is signaled.

If container is a line, then return the number of items in that line.

If container is a buffer, then return the total number of items in that buffer.

items I[text.editor-butfer] [Generic Function]
container &optionalstart end

Return the sequence items of container or the specified subsequence as a vector.

The optional parameters start and end have the same interpretation as for
the cl:subseq (https://novaspec.org/cl/f_subseq) function. If start
and end are not valid bounding index designators, a condition of type
text.editor-buffer:bounding-indices-error is signaled.

If container is an attached cursor, operate on the sequence or a subsequence of the
items of the line to which container is attached. If container is not currently at-
tached to a line, a condition of type text.editor-buffer:cursor-detached-error
is signaled.

If container is a line, operate on the sequence or a subsequence of the items of that
line.

If container is a buffer, then operator on the sequence or a subsequence of all items
in that buffer.

note: If container is a buffer and start and end select only a small sub-
sequence of all items, the function will currently likely require a similar
amount of computation as selecting all items. The reason is that this
functions does not currently use an efficient method of mapping linear
indices like start and end to the respective line which contains that linear
index.

2.7 Line Number Protocol

The generic functions in this protocol can be applied to text.editor-buffer:cursor in-
stances and text.editor-buffer:line instances.

line-number [text.editor-buffer] [Generic Function]
thing
Return the line number of thing.
If thing is a cursor and that cursor is attached to a line, then the generic function

text.editor-buffer:line is called with thing as its argument and the return value
is used as the argument in a recursive call to line-number which behaves as described

https://novaspec.org/cl/f_subseq

Chapter 2: External Protocols 10

below. If thing is a cursor and that cursor is not attached to any line, a condition of
type text.editor-buffer:cursor-detached-error is signaled.

If thing is a line and that line is attached to a buffer, then the line number
of line in that buffer is returned. The first line of the buffer has the number
0. If thing is a line that is not attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

2.8 Buffer Link Protocol

This protocol allows obtaining the buffer, if any, to which an object is directly
or indirectly attached. The generic functions in this protocol can be applied to
text.editor-buffer:cursor instances and text.editor-buffer:1line instances.

buffer [text.editor-buffer] [Generic Function]
thing

Return the buffer to which thing is directly or indirectly attached.

If thing is an attached cursor, then return the buffer of the line to which the cursor
is attached. If thing is a cursor that is not currently attached to a line, a condition
of type text.editor-buffer:cursor-detached-error is signaled.

If thing is a an attached line, then return the buffer to which the line is attached.
If thing is a line that is not currently attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

2.9 Cursor Protocol

This protocol extends the Section 2.5 [Location Comparison Protocol|, page 7, Section 2.6
[Item Container Protocol|, page 8, Section 2.7 [Line Number Protocol], page 9, and
Section 2.8 [Buffer Link Protocol], page 10. As a result, the functions that form those
protocols such as text.editor-buffer:location<, text.editor-buffer:item-count,
text.editor-buffer:line-number and text.editor-buffer:buffer are applicable to
cursor objects.

line [text.editor-butfer] [Generic Function]
cursor

Return the line to which cursor is attached or nil if cursor is not attached.

This function typically calls text.editor-buffer.implementation:line to actually
perform the operation.

stickiness [text.editor-buffer] [Generic Function]
cursor

Return either :1left or :right to indicate the stickiness of cursor.

This function typically calls text.editor-buffer.implementation:stickiness to
actually perform the operation.

Chapter 2: External Protocols 11

Cursor Attachment

attachedp [text.editor-buffer] [Function]
cursor

Return true if cursor is attached to a line.

attach [text.editor-buffer] [Generic Function]
cursor line &optional (index 0)

Attach cursor to line at index.

If index is supplied and it is greater than the number of items in line, the
text.editor-buffer:end-of-line-error is signaled. If cursor is already attached
to a line, text.editor-buffer:cursor-attached-error is signaled.

This function typically calls text.editor-buffer.implementation:attach to actu-
ally perform the operation.

detach [text.editor-butfer] [Generic Function]
cursor

Detach cursor from the line to which it is attached.

If cursor is already detached, a condition of type text.editor-buffer:cursor-detached-errorf
is signaled.

This function typically calls text.editor-buffer.implementation:detach to actu-
ally perform the operation.

Cursor Location

index [text.editor-butfer] [Generic Function]
cursor

Return the index of cursor in the line to which it is attached.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

(setf index) I[text.editor-butfer] [Generic Function]
new-value cursor

Set the index of cursor to new-value in the line to which cursor is attached.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

If new-value is negative, then a condition of type text.editor-buffer:beginning-of-line-error]
is signaled. If new-value is strictly greater than the number of items in the line to

which cursor is attached (See text.editor-buffer:item-count), then a condition

of type text.editor-buffer:end-of-line-error is signaled.

beginning-of-line-p [text.editor-buffer] [Generic Function]
cursor

Return true if and only if cursor is located at the beginning of the line to which cursor
is attached.

Chapter 2: External Protocols 12

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Calling this function is equivalent to calling the function text.editor-buffer:index
with cursor as argument and comparing the return value to 0. However, this function
might be implemented differently for reasons of performance.

end-of-line-p [text.editor-buffer] [Generic Function]
cursor

Return true if and only if cursor is located at the end of the line to which cursor is
attached.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Calling this function is equivalent to calling the function text.editor-buffer:index
with cursor as argument and comparing the return value to the number of items in the
line to which cursor is attached (See text.editor-buffer:item-count). However,
this function might be implemented differently for reasons of performance.

beginning-of-buffer—p [text.editor-buffer] [Generic Function]
cursor

Return true if and only if cursor is located at the beginning of the buffer to which
cursor is indirectly attached.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. If cursor is at-
tached to a line, but that line is not attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

end-of-buffer-p [text.editor-buffer] [Generic Function]
cursor

Return true if and only if cursor is located at the end of the buffer to which cursor
is indirectly attached.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. If cursor is at-
tached to a line, but that line is not attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

Cursor Movement

backward-item [text.editor-buffer] [Generic Function]
cursor

Move cursor backward by one index and return cursor.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. If cursor is
at the beginning of the line to which it is attached, an error of type
text.editor-buffer:beginning-of-line-error is signaled.

Except for checking of preconditions, calling this function is equivalent to decre-
menting the text.editor-buffer:index of cursor. However, this function might be
implemented differently for reasons of performance.

Chapter 2: External Protocols 13

forward-item [text.editor-buffer] [Generic Function]
cursor

Move cursor forward by one index and return cursor

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. If cur-
sor is at the end of the line to which it is attached, an error of type
text.editor-buffer:end-of-line-error is signaled.

Except for checking of preconditions, calling this function is equivalent to increment-
ing the text.editor-buffer:index of cursor. However, this function might be im-
plemented differently for reasons of performance.

beginning-of-line [text.editor-buffer] [Generic Function]
cursor

Position cursor at the very beginning of the line to which it is attached and return
cursor.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Except for checking of preconditions, calling this function is equivalent to calling
the function text.editor-buffer: (setf index) with 0 and cursor as arguments.
However, this function might be implemented differently for reasons of performance.

end-of-1line [text.editor-butfer] [Generic Function]
cursor

Position cursor at the very end of the line to which it is attached and return cursor.

If cursor is mnot currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Except for checking of preconditions, calling this function is equivalent to calling the
function text.editor-buffer: (setf index) with the number of items in the line
to which cursor is attached (See text.editor-buffer:item-count) and cursor as
arguments. However, this function might be implemented differently for reasons of
performance.

beginning-of-buffer (text.editor-butfer] [Generic Function]
cursor

Position cursor at the very beginning of the buffer to which it is attached and return
cursor.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. Otherwise as-
sume cursor is attached to line. If line is not currently attached to a buffer, a
condition of type text.editor-buffer:line-detached-error is signaled.

Except for checking of preconditions, calling this function is equivalent to
calling the function text.editor-buffer:detach with cursor and then calling
text.editor-buffer:attach cursor and the first line of the buffer as arguments.
However, this function might be implemented differently for reasons of performance.

Chapter 2: External Protocols 14

end-of-buffer [text.editor-butfer] [Generic Function]
cursor

Position cursor at the very end of the buffer to which it is attached and return cursor.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. Otherwise as-
sume cursor is attached to line. If line is not currently attached to a buffer, a
condition of type text.editor-buffer:line-detached-error is signaled.

Except for checking of preconditions, calling this function is equivalent to
calling the function text.editor-buffer:detach with cursor and then calling
text.editor-buffer:attach cursor, the last line of the buffer and the item count of
that last line as arguments. However, this function might be implemented differently
for reasons of performance.

Cursor Items

item-before [text.editor-buffer] [Generic Function]
cursor

Return the item located immediately before cursor.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

If cursor is positioned at the beginning of the line it is attached to, signal a condition
of type text.editor-buffer:beginning-of-line-error.

Calling this function is equivalent to calling text.editor-buffer:item with the line
to which cursor is attached (See text.editor-buffer:line) and the index of cur-
sor (See text.editor-buffer:index) minus one. However, this function normally
calls text.editor-buffer.implementation:item-before and the implementation
performs the operation in an opaque way that allows for better performance or meets
other requirements.

item—after [text.editor-buffer] [Generic Function]
cursor

Return the item located immediately after cursor.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

If cursor is positioned at the end of the line it is attached to, signal a condition of
type text.editor-buffer:end-of-line-error.

Calling this function is equivalent to calling text.editor-buffer:item with the
line to which cursor is attached (See text.editor-buffer:line) and the index
of cursor (See text.editor-buffer:index). However, this function normally
calls text.editor-buffer.implementation:item-after and the implementation
performs the operation in an opaque way that allows for better performance or
meets other requirements.

insert-item-at [text.editor-butfer] [Generic Function]
cursor item

Chapter 2: External Protocols 15

Insert item at the index of cursor and return nil.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Calling this function is equivalent to calling text.editor-buffer:insert-item with
the line to which cursor is attached, item, and the index of cursor. However, this
function normally calls text.editor-buffer.implementation:delete-item-after
and the implementation performs the operation in an opaque way that allows for
better performance or meets other requirements.

delete-item-before [text.editor-buffer] [Generic Function]
cursor

Delete the item immediately before cursor and return nil.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Calling this function is equivalent to calling text.editor-buffer:delete-item with
the line to which cursor is attached and the index of cursor minus one. However, this
function normally calls text.editor-buffer.implementation:delete-item-beforel]
and the implementation performs the operation in an opaque way that allows for
better performance or meets other requirements.

delete-item-after [text.editor-butfer] [Generic Function]
cursor

Delete the item immediately after cursor and return nil.

If cursor is mnot currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Calling this function is equivalent to calling text.editor-buffer:delete-item with
the line to which cursor is attached and the index of cursor. However, this function
might be implemented differently for reasons of performance.

split-1line [text.editor-butfer] [Generic Function]
cursor

Split the line to which cursor is attached at the index of cursor into two lines, the
line cursor is attached to and a newly created one, and return the two lines as two
values.

After this operation, items and other cursors which precede the index of cursor will
be contained in the first line, items and other cursors which follow the index of cursor
will be contained in the second line.

After this operation, cursor and other cursors with the same index will be attached
to one of the two returned lines: If the cursor in question is left-sticky, it will be
attached to the first line, if the cursor in question is right-sticky, it will be attached
to the second line.

If cursor is mnot currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled.

Calling this function is equivalent to calling text.editor-buffer:split, passing it
the line to which cursor is attached, and the index of cursor. However, this function

Chapter 2: External Protocols 16

normally calls text.editor-buffer.implementation:split-using-buffer and the
implementation performs the operation in an opaque way that allows for better per-
formance or meets other requirements.

join-line [text.editor-buffer] [Generic Function]
cursor

Join the line to which cursor is attached with the line following it in the buffer to
which the line is attached and return the single remaining line.

If cursor is not currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. If cursor is attached to
the last line of the buffer, an error type text.editor-buffer: join-last-line-error]]
is signaled.

Calling this function is equivalent to calling text.editor-buffer: join, passing it
the line to which cursor is attached, and the index of cursor. However, this function
normally calls text.editor-buffer.implementation: join-using-buffer and the
implementation performs the operation in an opaque way that allows for better per-
formance or meets other requirements.

2.10 Line Protocol

This protocol extends the Section 2.6 [Item Container Protocol], page 8, Section 2.7 [Line
Number Protocol], page 9, and Section 2.8 [Buffer Link Protocol], page 10. As a re-
sult, the functions that form those protocols such as text.editor-buffer:item-count,
text.editor-buffer:line-number and text.editor-buffer:buffer are applicable to
line objects.

first-line-p [text.editor-buffer] [Generic Function]
line
Return true if line is the first line in the buffer it is attached to.

If line is mnot currently attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

last-line-p [text.editor-buffer] [Generic Function]
line
Return true if line is the last in the buffer it is attached to.

If line is not currently attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

CUT'SOTS [text.editor-buffer] [Generic Function]
line
Return a list of the cursors attached to line.
The order of the cursor objects in the returned list is unspecified. In particu-

lar, clients must not rely on the cursor objects being ordered according to their
text.editor-buffer:index.

Furthermore, the returned list may be destructively modified by a subsequent oper-
ation on a related cursor, line or buffer object. In other words, clients that retain

Chapter 2: External Protocols 17

the returned set of cursors must copy the cursor list or otherwise transfer the cursor
objects into some other container before invoking a subsequent operation.

Whether line is attached or not is of no consequence for this operation but the utility
of the operation is questionable when line is detached.

This function typically calls text.editor-buffer.implementation:cursors to ac-
tually perform the operation.

item [text.editor-buffer] [Generic Function]
line index

Return the item located at index in line.

If index is less than zero, a condition of type text.editor-buffer:beginning-of-line-errorj]
is signaled. If index is greater than or equal to the number of items

in line (See text.editor-buffer:item-count), a condition of type
text.editor-buffer:end-of-line-error is signaled.

Whether line is attached or not is of no consequence for this operation but the utility
of the operation is questionable when line is detached.

This function typically calls text.editor-buffer.implementation:item to actually
perform the operation.

insert-item I[text.editor-butfer] [Generic Function]
line index item

Insert item into the items of line at index index and return nil.

After this operation completes, what happens to cursors located at index
before the operation depends on the class of the cursor and of line. The
Section 4.2 [Standard Implementation|, page 34, provides two kinds of cursors,
namely text.editor-buffer.standard-line:left-sticky-cursor and
text.editor-buffer.standard-line:right-sticky-cursor. For such an
implementation, after this operation completes, any left-sticky cursor located at
index will be located before item, and any right-sticky cursor located index will be
located after item.

If index is less than 0, a condition of type text.editor-buffer:beginning-of-line-error]]

is signaled. If index is greater than the number of items in line (See
text.editor-buffer:item-count), a condition of type text.editor-buffer:end-of-line-errorf]
is signaled.

Whether line is attached or not is of no consequence for this operation but the utility
of the operation is questionable when line is detached.

This function typically calls text.editor-buffer.implementation:insert-item to
actually perform the operation.

delete-item [text.editor-buffer] [Generic Function]
line index

Delete the item at index in line and return nil.

If index is less than 0, a condition of type text.editor-buffer:beginning-of-line-errorf]
is signaled. If position is greater than or equal to the number of

Chapter 2: External Protocols 18

items in line (See text.editor-buffer:item-count), a condition of type
text.editor-buffer:end-of-line-error is signaled.

Whether line is attached or not is of no consequence for this operation but the utility
of the operation is questionable when line is detached.

This function typically calls text.editor-buffer.implementation:delete-item to
actually perform the operation.

Split [text.editor-buffer] [Generic Function]
line index

Split line into two lines at index, line and a newly created line, and return the newly
created line.

After this operation, line will contain the items and cursors of line that precede index
and the new line will contain the items and cursors of line that follow index.

After this operation, any left-sticky cursor located at index will be located at the end
of line, and any right-sticky cursor located at index will be located at the beginning
of the new line.

If line is mnot currently attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

To actually perform the operation, this function normally calls text.editor-buffer.implementation:s
which in turn calls text.editor-buffer.implementation:make-line-like with
line and appropriate keyword arguments to create the new line.

join [text.editor-buffer] [Generic Function]
line
Join line with the line following it in the buffer to which line is attached which we
will call next-line and return the single remaining line.

Items and cursors from next-line are transferred to line.

If line is mnot currently attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled. If line is
the last line of the buffer to which it is attached, a condition of type
text.editor-buffer:join-last-line-error is signaled.

This function normally calls text.editor-buffer.implementation: join-using-buffer]]
to actually perform the operation.

note: Notice that the protocols described here do not contain any delete-line
operation. This design decision was made on purpose. By only providing
text.editor-buffer: join, we guarantee that removing a line leaves a trace
in the buffer in the form of a modification operation on the first of the two lines
that were joined. This feature is essential in order for the Section 2.12 [Update
Protocol], page 19, to work correctly.

2.11 Buffer Protocol

This protocol extends the Section 2.6 [Item Container Protocol], page 8. As a result, the
functions that form that protocol such as text.editor-buffer:item-count are applicable
to line objects.

Chapter 2: External Protocols 19

current-time [text.editor-buffer] [Generic Function]
buffer

Return the time stamp of the most recent operation that modified buffer.

The main operation that client code can perform with the returned time
stamp is to pass it as an argument to the text.editor-buffer:update
function. If the text.editor-buffer:update function is called with
a time stamp as its time argument that is greater than or equal to
text.editor-buffer:current-time of the buffer in question, then a single skip
operation is issued. Therefore, text.editor-buffer:update must return the value
of text.editor-buffer:current-time, so that the second of two consecutive calls
to text.editor-buffer:update with the same time stamp will skip the entire
buffer. See Section 2.12 [Update Protocol], page 19.

line-count [text.editor-buffer] [Generic Function]
buffer

Return the number of lines in buffer.

find-line [text.editor-buffer] [Generic Function]
buffer line-number

Return the line in buffer with the given line-number.

If line-number is less than 0 or greater than or equal to the number of lines in buffer,
then the error text.editor-buffer:invalid-line-index-error is signaled.

2.12 Update Protocol

The purpose of the buffer update protocol is to, for example in a text editor application,
allow for a number of edit operations to the buffer without updating the view of the buffer.
This functionality is important because a single user-level command may result in an arbi-
trary number of edit operations to the buffer, and we typically want the view to be updated
only once, when all those edit operations have been executed.

At the center of the update protocol is the concept of a time stamp. The nature of this
time stamp is not specified, other than the fact that its value is incremented for each
operation that alters the contents of the buffer. The only operation that client code is
allowed to perform on a time stamp is to store it and pass it as an argument to the protocol
function text.editor-buffer:update. Using a time stamp in this way, the client indicates
the most recent buffer state that has been displayed in the view (or processed by the
client in some other way). The update protocol uses the time stamp to report changes
to the client that edit operations have performed on the buffer since the indicated state.
The initial line of a fresh buffer has a create-time and a modify-time of 0, and the
text.editor-buffer:current-time of a fresh buffer is also 0. It follows that a time
argument of nil passed to text.editor-buffer:update must be interpreted as negative
so that a create operation of that initial line is correctly issued.

Changes are reported via four callback functions that the client must supply to the update
protocol: create, modify, sync and skip. The callbacks only assume that the view (or
client in general) keeps a copy of the structure of the lines of the buffer, and that this
copy has a cursor that is affected by the callbacks. This cursor can be before the first

Chapter 2: External Protocols 20

line of the view, after the last line of the view, or between two lines of the view. When
text.editor-buffer:update is called by client code, the cursor is located before the first
line of the view.

update [text.editor-buffer] [Generic Function]
buffer time sync skip modify create

The buffer parameter is a buffer that might have been modified since the last call to
update. The time parameter is the time stamp of the last time the update was called,
so that the function will report modifications since that time. In addition to a time
stamp, the time argument can also be nil, which is interpreted as the beginning of
time. Thus, when nil is given as a value of this argument, the operations generated
correspond to the creation of the buffer.

This function returns a new time stamp to be used as the time argument in the next
call to update.

The time stamp is specific to each buffer, and more importantly, to each buffer im-
plementation. The consequences are unspecified if a time stamp returned by calling
update on one buffer is used in a call to update with a different buffer.

The parameters sync, skip, modify, and create, are designators for callback functions
that are called by this function. They are to be considered as update operations on
some representation of the buffer as it was after the previous call to update. The
operations have the following meaning:

sync
indicates the first unmodified line after a sequence of new or modified
lines. Accordingly, this function is called once, following one or more
calls to create or modify. This function is called with a single argument:
the unmodified line. Client code must compare the current line of its view
to the argument, and delete the current line repeatedly until the two are
cl:eq (https://novaspec.org/cl/f_eq). Finally, the client must make
the immediately following line the current one.

skip
indicates that a number of lines have not been subject to any modifica-
tions since the last update call. The function takes a single argument:
the number of lines to skip. This function is called first to indicate that
a prefix of the buffer is unmodified, or after a sync operation to indicate
that that many lines following the one given as argument to the sync
operation are unmodified. This operation is also called when there are
unmodified lines at the end of the buffer so that the total line count of the
buffer corresponds to the total number of lines mentioned in the sequence
of operations.

modify

indicates a line that has been modified. The function is called with that
line as the argument. Client code must compare the current line of its
view to the argument, and delete the current line repeatedly until the two

https://novaspec.org/cl/f_eq

Chapter 2: External Protocols 21

are cl:eq (https://novaspec.org/cl/f_eq). It must then take what-
ever action is needed for the modified contents of the line, and finally it
must make the immediately following line the current one.

create

indicates a line that has been created. The function is called with that line
as the argument. Client code should insert the new line at the position
of the cursor, and then leave the cursor positioned immediately after the
inserted line.

This function typically coerces the values of the sync, skip, modify, and
create parameters from function designators to functions and then calls
text.editor-buffer.implementation:update with the modified argument list to
actually perform the operation.

2.13 Convenience Functions

make-buffer [text.editor-buffer] [Function]
&key (buffer-class 'text.editor-buffer.standard-buffer:buffer) (line-class ’text.editor-
buffer.standard-line:line) (cursor-class ’text.editor-buffer.standard-line:right-sticky-
cursor) initial-contents line-separator

Create a buffer, a line and possibly a cursor and return two values: the buffer and
the cursor or nil.

The line is contained in the buffer and the cursor, if created, is attached to the line.

buffer-class, if supplied, specifies the class of the created buffer. The default is
text.editor-buffer.standard-buffer:buffer.

line-class, if supplied, specifies the class of the created line. The default is
text.editor-buffer.standard-line:1line.

cursor-class, if supplied, specifies the class of the created cursor. The default is
text.editor-buffer.standard-line:right-sticky-cursor. If cursor-classisnil,
no cursor is attached to the initial line and the second return value of this function
isnil.

initial-contents, if supplied, is a sequence of items which should be contained in the
buffer. If initial-contents is not supplied, the returned buffer will be empty. The
cursor moves based on its stickiness when the elements of initial-contents are inserted
as items. Unless line-separator is supplied, the entirety of initial-contents is inserted
into the initial (and only) line.

If line-separator is supplied, elements of initial-contents that are cl:eql (https://
novaspec.org/cl/f_eql) to line-separator act as line separators. Such an element
will not be inserted as an item but instead causes the items preceding it and the items
following it to be inserted into different lines. If initial-contents is a string and line-
separator is #\Newline, the resulting buffer will be similar to how most text editors
would interpret that string.

insert-items [text.editor-buffer] [Function]
line index items &key (start 0) end line-separator

https://novaspec.org/cl/f_eq
https://novaspec.org/cl/f_eql
https://novaspec.org/cl/f_eql

Chapter 2: External Protocols 22

Insert the elements of the sequence items into line at index and return line.

If supplied, start and end are designators for a subsequence of items that should be
inserted instead of all elements.

If line-separator is supplied, elements of items that are c1:eql (https://novaspec.
org/cl/f_eql) to line-separator act as line separators. Such an element will not be
inserted as an item but instead causes the items preceding it and the items following
it to be inserted into different lines.

If line is not currently attached to a buffer, a condition of type
text.editor-buffer:line-detached-error is signaled.

insert-items—at [text.editor-buffer] [Function]
cursor items &key (start 0) end line-separator

Insert the elements of the sequence items into the buffer to which cursor is attached
at the location of cursor and return cursor.

If supplied, start and end are designators for a subsequence of items that should be
inserted instead of all elements.

If line-separator is supplied, elements of items that are c1:eql (https://novaspec.
org/cl/f_eql) to line-separator act as line separators. Such an element will not be
inserted as an item but instead causes the items preceding it and the items following
it to be inserted into different lines.

If cursor is mnot currently attached to a line, a condition of type
text.editor-buffer:cursor-detached-error is signaled. Otherwise as-
sume that cursor is attached is attached to line. If line is not currently attached to a
buffer, a condition of type text.editor-buffer:line-detached-error is signaled.

safe-line-number [text.editor-buffer] [Function]
line
Return nil or the line number of line.
The function returns nil if line is not attached to a buffer.

In contrast to text.editor-buffer:line-number and text.editor-buffer.implementation:line-nu
this function does not disturb any data structures of the buffer or line imple-

mentation and is thus suitable for cl:print-object (https://novaspec.org/
cl/f_print-object) methods and similar situations. In line with this purpose,

this function may have much worse performance characteristics than the functions

mentioned above.

https://novaspec.org/cl/f_eql
https://novaspec.org/cl/f_eql
https://novaspec.org/cl/f_eql
https://novaspec.org/cl/f_eql
https://novaspec.org/cl/f_print-object
https://novaspec.org/cl/f_print-object

23

3 Implementation Protocols

This chapter describes the implementation protocols that text.editor-buffer uses and pro-
vides. Generally, the protocol functions described in Chapter 2 [External Protocols], page 4,
are not specialized to particular buffer, line or cursor classes. Those functions check pre-
conditions of the respective operation and then call one of the implementation protocol
functions to perform the essence of the operation. In contrast, implementation protocol
functions are usually specialized to particular implementation classes, do not check precon-
ditions and do not delegate further.

As an example, the default method on text.editor-buffer:item-before when applied to
a cursor checks that the cursor is attached to a line and not positioned at the beginning of
that line and then calls text.editor-buffer.implementation:item-before. The latter
implementation function retrieves and returns the requested item in an implementation-
specific manner without checking the preconditions again.

Buffer
current-time detached cursor
Dock @

Line 0

E@ﬁ
Line

s P (] [[

detached line

Dock
Line 2

0

Figure 3.1: Important implementation concepts and their relations for a single buffer. Note
the inclusion of docks and detached objects in contrast to the simplified architecture diagram
in Figure 1.1.

Figure 3.1 illustrates the important concepts of text.editor-buffer in more detail than Fig-
ure 1.1. In particular, this version of the diagram includes the implementation concept of a
dock which is an indirection between the buffer object and its attached line objects. Docks
are tied to the buffer implementation (as opposed to the line implementation) and allow
the buffer implementation to store additional information about a line without intruding
into the line implementation. As an example, the buffer part of the Section 4.2 [Standard
Implementation], page 34, organizes lines in a tree and stores the tree structure as well as
information about subtrees in its dock objects.

Chapter 3: Implementation Protocols 24

For many of the generic functions described in this chapter, default methods exist
which are specialized to one of the protocol classes text.editor-buffer:cursor,
text.editor-buffer:line or text.editor-buffer:buffer and perform the required
behavior, possibly in an inefficient way, by calling other generic functions from the
implementation protocols. A new implementation does not have to define methods on
generic functions with such a default function but may do so anyway, for example in order
to provide a more efficient implementation.

3.1 Location Comparison Implementation Protocol

The functions of the Section 2.5 [Location Comparison Protocol], page 7, perform checks for
invalid arguments, group their arguments into one or more binary operator applications,
flip the comparison direction where necessary and then call the generic functions of this
protocol to perform the core behavior.

location< [text.editor-buffer.implementation] [Generic Function]
locationl location2
Return true if locationl is positioned strictly before location2 in the buffer.
All locations have to be attached to lines which in turn must all belong to a sin-
gle buffer. occur. These preconditions are not checked. If these preconditions are
violated, incorrect behavior or errors may occur.

location<= [text.editor-buffer.implementation] [Generic Function]
locationl location2

Return true if locationl is positioned before or at the same position as location2 in
the buffer.

All locations have to be attached to lines which in turn must all belong to a sin-
gle buffer. occur. These preconditions are not checked. If these preconditions are
violated, incorrect behavior or errors may occur.

location= [text.editor-buffer. implementation] [Generic FllIlCtiOIl]
locationl location2

Return true if locationl is positioned at the same position as location2 in the buffer.

All locations have to be attached to lines which in turn must all belong to a sin-
gle buffer. occur. These preconditions are not checked. If these preconditions are
violated, incorrect behavior or errors may occur.

3.2 Item Container Implementation Protocol

The default methods of the Section 2.6 [Item Container Protocol], page 8, perform checks
for invalid arguments and invalid state then call the generic functions of this protocol to
perform the core behavior.

This protocol is implemented by line classes and buffer classes but not cursor classes since
those delegate to the respective line they are attached to.

item—-count [text.editor-buffer. implementation] [Generic Function]
container

Return the number of items in container.

Chapter 3: Implementation Protocols 25

items [text.editor-buffer.implementation] [Generic FllnCtiOIl]
container start end

Return the subsequence of items in container designated by start and end.

start must be valid start bound for a subsequence of the items in container. end must
be either nil or valid end bound for a subsequence of the items in container. These
preconditions are not checked. If these preconditions are violated, incorrect behavior
Or errors may Occur.

3.3 Line Link Implementation Protocol

line [text.editor-buffer. implementation] [Generic Function]
thing
Return nil or the line object to which thing is attached.

If thing is a cursor, return the line to which thing is attached or nil if thing is not
attached.

If thing is a dock, return the line associated to thing which is a particular line. The
association never changes and is never nil.

3.4 Buffer Link Implementation Protocol

buffer [text.editor-buffer. implementation] [Generic Function]
thing
Return nil or the buffer object to which thing is attached.

If thing is a line, return the buffer in which thing is contained. The default
specialized to text.editor-buffer:line first retrieves the dock of thing via
text.editor-buffer.implementation:dock then calls this function on the dock
object.

If thing is a dock, return the buffer in which thing is contained. The association
never changes and is never nil.

3.5 Cursor Implementation Protocol

This protocol, including its sub-protocols, consists of methods for implementing the behav-
ior of cursors. An implementation of this protocol must include the Section 3.1 [Location
Comparison Implementation Protocol], page 24, and the Section 3.3 [Line Link Implemen-
tation Protocol], page 25.

stickiness [text.editor-buffer.implementation] [Generic Function]
cursor

Return either :1left or :right to indicate the stickiness of cursor.
Cursor Attachment

attach [text.editor-buffer. implementation] [Generic Function]
cursor line index

Attach cursor to line at index and return nil.

Chapter 3: Implementation Protocols 26

cursor must not already be attached to a line. index must not be negative and has
to be less than the number of items in line. These preconditions are not checked. If
these preconditions are violated, incorrect behavior or errors may occur.

detach [text.editor-buffer. implementation] [Generic Function]
cursor

Detach cursor from the line to which it is attached and return that line.

cursor has to be attached to a line. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

Cursor Location

index [text.editor-buffer.implementation] [Generic Function]
cursor

Return the index of cursor in the line to which it is attached.

cursor has to be attached to a line. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

(setf index) [text.editor-buffer.implementation] [Generic FllIlCtiOIl]
new-value cursor

Set the index of cursor to new-value in the line to which cursor is attached.

cursor has to be attached to a line. new-value most not be negative or strictly greater
than the number of items in the line to which cursor is attached. This precondition is
not checked. If this precondition is violated, incorrect behavior or errors may occur.

beginning-of-1line-p [text.editor-buffer.implementation] [Generic Function]
cursor

Return true if and only if cursor is located at the beginning of the line to which cursor
is attached.

cursor has to be attached to a line. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer: cursor exists. Simple
implementations of the cursor protocol can therefore forego defining a method on this
generic function. More sophisticated implementations might use a more optimized
way of determining whether cursor is at the beginning of the line.

end—of—line—p [text.editor-buffer.implementation] [Generic Function]
cursor

Return true if and only if cursor is located at the end of the line to which cursor is
attached.

cursor has to be attached to a line. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor exists. Simple
implementations of the cursor protocol can therefore forego defining a method on this
generic function. More sophisticated implementations might use a more optimized
way of determining whether cursor is at the end of the line.

Chapter 3: Implementation Protocols 27

beginning—of -buff €r—p [text.editor-buffer.implementation] [Generic FllnCtiOIl]
cursor

Return true if and only if cursor is located at the end of the buffer to which cursor
is indirectly attached.

cursor has to be attached to a line. That line has to be attached to a buffer. These
preconditions are not checked. If these preconditions are violated, incorrect behavior
Or errors may Occur.

A default method which is specialized to text.editor-buffer:cursor exists. Simple
implementations of the cursor protocol can therefore forego defining a method on this
generic function. More sophisticated implementations might use a more optimized
way of determining whether cursor is at the beginning of the buffer.

end-of-buff er—p [text.editor-buffer.implementation] [Generic FllnCtiOH]
cursor
cursor has to be attached to a line. That line has to be attached to a buffer. These
preconditions are not checked. If these preconditions are violated, incorrect behavior
Or €rTors may OcCCur.
A default method which is specialized to text.editor-buffer:cursor exists. Simple
implementations of the cursor protocol can therefore forego defining a method on this
generic function. More sophisticated implementations might use a more optimized
way of determining whether cursor is at the end of the buffer.

Cursor Movement

backward-item [text.editor-buffer.implementation] [Generic Function]
cursor

Move cursor backward by one index and return cursor.

cursor has to be attached to a line. cursor must not be positioned at the beginning of
the line it is attached to. These preconditions are not checked. If these preconditions
are violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and simply
decrements the text.editor-buffer.implementation:index of cursor exists.

forward-item [text. editor-buffer.implementation] [Generic Function]
cursor

Move cursor forward by one index and return cursor.

cursor has to be attached to a line. cursor must not be positioned at the end of the
line it is attached to. These preconditions are not checked. If these preconditions are
violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and simply
increments the text.editor-buffer.implementation:index of cursor exists.

beginning-of-line [text.editor-buffer.implementation] [Generic Function]
cursor

Move cursor to the beginning of the line it is attached to and return cursor.

Chapter 3: Implementation Protocols 28

cursor has to be attached to a line. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and simply
sets the text.editor-buffer.implementation:index of cursor to 0 exists.

end-of-line [text.editor-buffer.implementation] [Generic Function]
cursor

Move cursor to the end of the line it is attached to and return cursor.

cursor has to be attached to a line. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and
simply sets the text.editor-buffer.implementation:index of cursor to the
text.editor-buffer.implementation:item-count of the line exists.

Cursor Items

item-before [text.editor-buffer.implementation] [Generic FllnCtiOH]
cursor

Return the item located immediately before cursor.

cursor has to be attached to a line. cursor must not be positioned at the beginning of
the line it is attached to. These preconditions are not checked. If these preconditions
are violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and simply
calls text.editor-buffer.implementation:item with the line to which cursor is
attached and (1- (index cursor)) exists.

item—after T[text.editor-buffer.implementation] [Generic Function]
cursor

Return the item located immediately after cursor.

cursor has to be attached to a line. cursor must not be positioned at the end of the
line it is attached to. These preconditions are not checked. If these preconditions are
violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and simply
calls text.editor-buffer.implementation:item with the line to which cursor is
attached and (index cursor) exists.

insert-item-at [text.editor-buffer.implementation] [Generic Function]
cursor item
Insert item into the items of the line to which cursor is attached at the index of cursor
and return nil.
cursor has to be attached to a line. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and sim-
ply calls text.editor-buffer.implementation:insert-item with the line to which
cursor is attached, (index cursor) and item exists.

Chapter 3: Implementation Protocols 29

delete-item-before [text.editor-buffer.implementation] [Generic FllnCtiOIl]
cursor
Delete the item before cursor from the items of the line to which cursor is attached
and return nil.
cursor has to be attached to a line. cursor must not be located at the beginning
of the line to which it is attached. These preconditions are not checked. If these
preconditions are violated, incorrect behavior or errors may occur.
A default method which is specialized to text.editor-buffer:cursor and sim-
ply calls text.editor-buffer.implementation:delete-item with the line to which
cursor is attached and (1- (index cursor)) exists.

delete-item—after [text .editor-buffer.implementation] [Generic Function]
cursor

Delete the item after cursor from the items of the line to which cursor is attached
and return nil.

cursor has to be attached to a line. cursor must not be located at the end of the line
to which it is attached. These preconditions are not checked. If these preconditions
are violated, incorrect behavior or errors may occur.

A default method which is specialized to text.editor-buffer:cursor and sim-
ply calls text.editor-buffer.implementation:delete-item with the line to which
cursor is attached and (index cursor) exists.

3.6 Line Implementation Protocol

This protocol, including its sub-protocols, consists of methods for implementing the behavior
of line objects. An implementation of this protocol must include the Section 3.2 [Item
Container Implementation Protocol], page 24.

dock [text.editor-buffer.implementation] [Generic Function]
line

Return the dock which contains line.

(setf dOCk) [text.editor-buffer.implementation] [Generic Function]
new-value line

Set the dock of line to new-value.

first-line-p [text.editor-buffer.implementation] [Generic Function]
line
Return true if line is the first line of the buffer that contains it and false otherwise.

line has to be attached to a buffer.. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

last—line—p [text.editor-buffer.implementation] [Generic Function]
line
Return true if line is the last line of the buffer that contains it and false otherwise.

line has to be attached to a buffer.. This precondition is not checked. If this precon-
dition is violated, incorrect behavior or errors may occur.

Chapter 3: Implementation Protocols 30

CUrsSOrsS [text.editor-buffer.implementation] [Generic FllnCtiOIl]
line
Return a list of the cursors attached to line.

The order of cursor objects in the returned list is unspecified. Furthermore, the
returned list may be destructively modified by a subsequent operation on a related
cursor, line or buffer object.

Whether line is attached to a buffer is of no consequence for this operation.

item [text.editor-buffer.implementation] [Generic Function]
line index

Return the item at index index in line.

index must be between 0 and one less than the item count of line. This precondition
is not checked. If this precondition is violated, incorrect behavior or errors may occur.

Whether line is attached to a buffer is of no consequence for this operation.

insert-item I[text.editor-buffer.implementation] [Generic Function]
line index item
Insert item into the items of line at index index and return nil.
index must be between 0 and the item count of line. This precondition is not checked.
If this precondition is violated, incorrect behavior or errors may occur.
The effect of this operation on items and cursors already contained in line is the same
as for text.editor-buffer:insert-item.

If a line is contained in a dock, text.editor-buffer.implementation:note-line-changed]
is called with that dock, line and 1 as its arguments.

delete—-item [text.editor-buffer.implementation] [Generic Function]
line index

Insert item at index of line and return nil.
index must be between 0 and one less than the item count of line. This precondition
is not checked. If this precondition is violated, incorrect behavior or errors may occur.
The effect of this operation on items and cursors already contained in line is the same
as for text.editor-buffer:insert-item.

If a line is contained in a dock, text.editor-buffer. implementation:note-line-changed]]
is called with that dock, line and —1 as its arguments.

Split [text.editor-buffer.implementation] [Generic FU_IlCtiOIl]
line index

Split line at index into two lines, line and a newly created line which is returned.

line contains the items and cursors preceding index and the newly created and re-
turned line contains the items and cursors following index. For cursors the index of
which is index, whether line or the new line will contain the cursor depends on the
stickiness of the cursor: if the cursor is left-sticky, it will be contained by line, if the
cursor is right-sticky, it will be contained by the new line.

Note that this function takes care only of creating the new line as well as trans-
ferring items and cursors. Any changes to the arrangement of lines within a buffer

Chapter 3: Implementation Protocols 31

are handled by text.editor-buffer.implementation:split-using-buffer which
typically calls this function.

To create the new line, the method on this generic function specialized to
text.editor-buffer.standard-line:line, calls text.editor-buffer.implementation:make-line-
with line and the keyword arguments :contents, :first-line-p

and :last-line-p. The method on this generic function specialized to
text.editor-buffer.simple-line:1line, calls text.editor-buffer.implementation:make-line-11
with line and the keyword argument :contents.

join [text.editor-buffer.implementation] [Generic Function]
linel line2

Join linel with line2 and return the single remaining line.

Items and cursors from line2 are transferred to linel. Note that this function takes
care only of items and cursors. Any changes to the arrangement of lines within a
buffer are handled by text.editor-buffer.implementation:join-using-buffer
which typically calls this function.

make-line-like [text.editor-buffer.implementation] [Generic Function]
line &key contents first-line-p last-line-p &allow-other-keys

Make and return a new line object similar to line.

The purpose of this function is to allow clients to use custom line classes which
may or may not be subclasses of the line classes provided by text.editor-buffer.
To this end, the function text.editor-buffer.implementation:split calls this
function when splitting a given line by creating a similar line object, also retain-
ing the original line object and then distributing items and cursors between the
two lines. Since the client can supply an initial line of any class when a buffer
is created and control the class of lines added by splitting, the client has control
over the creation of all line objects without having to interfere with the respective
text.editor-buffer.implementation:split method.

The keyword arguments accepted by this function depend on the class of line.
When line is a text.editor-buffer.standard-line:line, the default method
on text.editor-buffer.implementation:split calls this function with the
keyword arguments :contents, :first-line-p and :last-line-p. When
line is a text.editor-buffer.simple-line:line, the default method on
text.editor-buffer.implementation:split calls this function with the keyword
argument :contents. For a custom line class with an associated custom method on
text.editor-buffer.implementation:split, a different set of keyword arguments
may be supplied and accepted. In general, methods on this generic function should
accept the same set of initargs as is accepted by the respective line class and
call cl:make-instance (https://novaspec.org/cl/f_make-instance) with the
provided initargs.

3.7 Dock Protocol

This protocol, including its sub-protocols, consists of methods for implementing the behavior
of dock objects. An implementation of this protocol must include the Section 3.3 [Line

https://novaspec.org/cl/f_make-instance

Chapter 3: Implementation Protocols 32

Link Implementation Protocol], page 25, and the Section 3.4 [Buffer Link Implementation
Protocol], page 25. A dock object is associated to a particular line object and a particular
buffer object for its whole existence.

note—line—changed [text.editor-buffer.implementation] [Generic Function]
node line item-count-diff

Adjust information stored in node according to item-count-diff and return unspecified
values.

node is the dock that contains line. item-count-diff indicates the amount by which
the item count has changed and is typically either 1 or —1.

This function is called when the item count of line changes so that any summary
information such as item counters stored in node can be adjusted.

3.8 Buffer Implementation Protocol

This protocol, including its sub-protocols, consists of methods for implementing the behavior
of buffer objects. An implementation of this protocol must include the Section 3.2 [Item
Container Implementation Protocol], page 24.

current-time [text.editor-buffer.implementation] [Generic FllnCtiOIl]
buffer

Return the time stamp of the most recent operation that modified buffer.

line-count [text.editor-buffer.implementation] [Generic Function]
buffer

Return the number of lines in buffer.

find-line [text.editor-buffer. implementation] [Generic FllIlCtiOIl]
buffer line-number

Return the line with line number line-number in buffer.
line-number must not be negative and has to be smaller than the number of lines in

buffer. This precondition is not checked. If this precondition is violated, incorrect
behavior or errors may occur.

line—number-us ing—buffer [text.editor-buffer.implementation] [Generic FU_IlCtiOIl]
buffer dock line

Return the line number of line within buffer.

The following relations have to be true: (eq dock (text.editor-
buffer.implementation:dock line)) and (eq buffer (text.editor-
buffer.implementation:buffer dock)). These preconditions are not checked. If
these preconditions are violated, incorrect behavior or errors may occur.

split—us ing—buffer [text.editor-buffer.implementation] [Generic Function]
buffer dock line index

Split line at index into two lines, a modified version of line and a newly created line,
and return the newly created line.

Chapter 3: Implementation Protocols 33

The first line is cl:eq (https://novaspec.org/cl/f_eq) to line and contains the
items and cursors preceding index and the second line contains the items and cursors
following index.

The following relations have to be true: (eq dock (text.editor-
buffer.implementation:dock line)) and (eq buffer (text.editor-
buffer.implementation:buffer dock)). These preconditions are not checked. If
these preconditions are violated, incorrect behavior or errors may occur.

join—using—buffer [text.editor-buffer.implementation] [Generic Function]
buffer dock line

Join line with the line following it in buffer which we will call next-line and return
the single remaining line.

This function normally calls text.editor-buffer.implementation: join with line
and next-line to transfer items and cursors from next-line to line. next-line becomes
detached from buffer.

The following relations have to be true: (eq dock (text.editor-
buffer.implementation:dock line)) and (eq buffer (text.editor-
buffer.implementation:buffer dock)). line must not be the last line of buffer.
These preconditions are not checked. If these preconditions are violated, incorrect
behavior or errors may occur.

3.9 Update Implementation protocol

update [text.editor-buffer.implementation] [Generic Function]
buffer time sync skip modify create
This function is typically called by text.editor-buffer:update and behaves mostly
like that function except
1. This function dos not allow the value nil for the time parameter. Instead the
caller should indicate the initial time, by passing -1 for time.

2. This function expects the sync, skip, modify and create arguments to be functions
instead of function designators.

https://novaspec.org/cl/f_eq

34

4 Implementations

text.editor-buffer includes two modules each of which contains an implementation of all
relevant protocols. However, the two modules are optimized for different purposes:

1. The Section 4.1 [Simple Implementation|, page 34, contains an implementation that
is, as the name suggests, optimized for simplicity of its data structures, algorithms
and code without any performance considerations. This module serves mainly as a
reference in the sense that the behavior of other implementations can be compared to
this baseline, for example in randomized tests.

2. The Section 4.2 [Standard Implementation|, page 34, contains an implementation that
is optimized for high performance in most usage scenarios. To this end, the module
employs more complicated data structures, caches and optimized code.

Clients of text.editor-buffer should generally use the standard implementation
since it provides consistent performance across most usage scenarios with-
out exposing clients to the internal complexity. This is why the convenience
function text.editor-buffer:make-buffer by default creates and returns a
text.editor-buffer.standard-buffer:buffer which is set up to contain instances of
text.editor-buffer.standard-line:line.

4.1 Simple Implementation

The “simple” implementation is distributed across two packages: text.editor-buffer.simple-line]}
and text.editor-buffer.simple-buffer. While the two packages are intended to be

used together, it is possible to use only one of those and use a different implementation for

the remaining aspects.

line [text.editor-buffer. simple-line] [Class]
A simple line that can store items and cursors but does not lend itself to efficient
implementation of the relevant protocol operations.

left—sticky—cursor [text.editor-buffer.simple-line] [Class]
A left-sticky cursor that works with instances of text.editor-buffer.simple-line:1line.J]

right—sticky—cursor [text.editor-buffer.simple-line] [Class]
A right-sticky cursor that works with instances of text.editor-buffer.simple-line:line.|]

buffer [text.editor-buffer. simple-buffer] [Class]
A simple buffer that can contain line instances and supports the buffer protocols but
is not efficient at looking up or manipulating its lines.

4.2 Standard Implementation

The “standard” implementation is distributed across two packages: text.editor-buffer.standard-linel]
and text.editor-buffer.standard-buffer. While the two packages are intended to be

used together, it is possible to use only one of those and use a different implementation for

the remaining aspects.

Chapter 4: Implementations 35

line [text.editor-buffer.standard-line] [Class]
A line class that supports an efficient implementation of the edit protocol operations
by representing the contained items either as a simple vector or as a gap buffer.

left—sticky—cursor [text.editor-buffer.standard-line] [Class]
A left-sticky cursor that works with instances of text.editor-buffer.standard-line:line.|]

right—sticky—cursor [text.editor-buffer.standard-line] [Class]
A right-sticky cursor that works with instances of text.editor-buffer.standard-line:1line.}j

buffer [text.editor-buffer.standard-butfer] [Class]
A buffer class that supports an efficient implementation of the edit protocol operations
by representing the contained lines in a binary tree and by caching various pieces of
information at different levels.

The simplest way to create a correctly configured instance of this class is the conve-
nience function text.editor-buffer:make-buffer.

Concept Index

D
dock. ... 23
L
left-sticky 15, 17, 18, 25, 30, 34, 35
R

S

36

37

Function and Macro and Variable and Type Index

(

(setf dock)
[text.editor-buffer.implementation]......... 29
(setf index) [text.editor-buffer]......... 11, 26

A

attach [text.editor-buffer] 11, 25
attachedp [text.editor-buffer]................ 11

B

backward-item [text.editor-buffer] 12, 27
beginning-of-buffer [text.editor-buffer] 13
beginning-of-buffer-error

[text.editor-buffer]covuinan.. 5
beginning-of-buffer-p

[text.editor-buffer] 12, 27

beginning-of-line [text.editor-buffer]... 13, 27
beginning-of-line-error [text.editor-buffer]. 5
beginning-of-line-p [text.editor-buffer]. 11, 26
bounding-indices-error [text.editor-buffer].. 6
buffer [text.editor-buffer]...... 6, 10, 25, 34, 35

C

current-time [text.editor-buffer]......... 19, 32
cursor [text.editor-buffer] 6
cursor-attached-error [text.editor-buffer]... 5
cursor-detached-error [text.editor-buffer]... 5
cursors [text.editor-buffer] 16, 30
cursors-not-comparable-error
[text.editor-buffer]ccoovn..... 4

D

delete-item [text.editor-buffer].......... 17, 30
delete-item-after [text.editor-buffer]... 15, 29
delete-item-before [text.editor-buffer].. 15, 29
detach [text.editor-buffer] 11, 26
dock [text.editor-buffer.implementation]...... 29

E

editor-buffer-error [text.editor-buffer] 4
end-of-buffer [text.editor-buffer] 14
end-of-buffer-error [text.editor-buffer] 5
end-of-buffer-p [text.editor-buffer] 12, 27
end-of-line [text.editor-buffer].......... 13, 28
end-of-line-error [text.editor-buffer]........ 5
end-of-line-p [text.editor-buffer] 12, 26

F

find-line [text.editor-buffer] 19, 32
first-line-p [text.editor-buffer]......... 16, 29
forward-item [text.editor-buffer]......... 13, 27

|

index [text.editor-buffer]................. 11, 26
insert-item [text.editor-buffer].......... 17, 30
insert-item-at [text.editor-buffer] 14, 28
insert-items [text.editor-buffer] 21
insert-items-at [text.editor-buffer]......... 22
invalid-item-index-error

[text.editor-buffer]ocviiinneann. 6
invalid-line-index-error

[text.editor-buffer] 6
item [text.editor-buffer].................. 17, 30
item-after [text.editor-buffer]........... 14, 28
item-before [text.editor-buffer].......... 14, 28
item-count [text.editor-buffer]............ 9, 24
items [text.editor-buffer].................. 9, 25

J

join [text.editor-buffer].................. 18, 31
join-last-line-error [text.editor-buffer].... 6
join-line [text.editor-buffer]................ 16
join-using-buffer
[text.editor-buffer.implementation]......... 33

L

last-line-p [text.editor-buffer].......... 16, 29
left-sticky-cursor
[text.editor-buffer.simple-line] 34, 35
line [text.editor-buffer]........ 6, 10, 25, 34, 35
line-count [text.editor-buffer]........... 19, 32
line-detached-error [text.editor-buffer] 5
line-number [text.editor-buffer] 9
line-number-using-buffer
[text.editor-buffer.implementation]......... 32
location/= [text.editor-buffer]................ 8
location< [text.editor-buffer] 7, 24
location<= [text.editor-buffer]............ 7,24
location= [text.editor-buffer] 7, 24
location> [text.editor-buffer]................. 8
location>= [text.editor-buffer]................ 8

M

make-buffer [text.editor-buffer] 21
make-line-like
[text.editor-buffer.implementation]......... 31

Function and Macro and Variable and Type Index 38

N

note-line-changed
[text.editor-buffer.implementation]......... 32

R

right-sticky-cursor
[text.editor-buffer.simple-line] 34, 35

S

safe-line-number [text.editor-buffer]........ 22
split [text.editor-buffer]................. 18, 30
split-line [text.editor-buffer] 15
split-using-buffer
[text.editor-buffer.implementation]......... 32
stickiness [text.editor-buffer]........... 10, 25

U

update [text.editor-buffer] 20, 33

39

Changelog

Release 0.2 (not yet released)
Release 0.1.0 (2026-02-06)

Initial import based on Cluffer predominantly written by Robert Strandh.

Major differences compared to Cluffer are listed below.

All protocols have been split into an external part and an implementa-
tion part. The external part is intended to be safe and convenient while
the implementation part is intended to be efficient and minimal. On the
safe vs. efficient axis, functions in external protocols check preconditions
while functions in implementation protocols assume correct arguments. On
the minimal vs. convenient axis, a good example are convenient external
functions location{<=,<,=,/=,>,>=} each of which accept any number
of arguments. On the implementation side, there are only the (almost)
minimal functions location{<=,<,=} each of which accepts exactly two
arguments.

Compared to Cluffer, lines in the standard-1ine module are less frequently
converted between the gap-buffer representation and the plain vector repre-
sentation. This change makes many operations more efficient, in particular
sequences of operations that used to trigger many back and forth conver-
sions.

Compared to Cluffer, it is easier for clients to supply their own line sub-
classes due to two changes: Firstly, when the split operation has to make
a new line object, it uses the new generic function make-line-like on
which clients can define their own methods. Secondly, the standard-line
module no longer uses change-class to implement the transition between
open and closed lines. The latter changes also has a positive impact on
performance in most all tested implementations.

The standard-buffer module now caches information that is needed for
mapping line numbers to line objects and vice versa. Compared to Cluffer,
these caches allow many common operations to be performed without
splaying the tree at the core of standard-buffer data structure.

This library offers the convenience functions make-buffer, insert-items
and insert-items-at for the common tasks of creating a buffer and adding
items in bulk.

	1 Introduction
	2 External Protocols
	Packages and Use Recommendation
	Thread Safety
	Conditions
	Protocol Classes
	Location Comparison Protocol
	Item Container Protocol
	Line Number Protocol
	Buffer Link Protocol
	Cursor Protocol
	Line Protocol
	Buffer Protocol
	Update Protocol
	Convenience Functions

	3 Implementation Protocols
	Location Comparison Implementation Protocol
	Item Container Implementation Protocol
	Line Link Implementation Protocol
	Buffer Link Implementation Protocol
	Cursor Implementation Protocol
	Line Implementation Protocol
	Dock Protocol
	Buffer Implementation Protocol
	Update Implementation protocol

	4 Implementations
	Simple Implementation
	Standard Implementation

	Concept Index
	Function and Macro and Variable and Type Index
	Changelog

